PLCC ver. 1.0

A Programmable Logic Controller for the IBM PC and compatibles.

Description:

PLCC is a single program that runs from a DOS command line, either directly at MS-DOS or in an MS-DOS prompt window under Win95. It communicates via the PC's parallel printer port with an external logic board, to monitor sensor inputs and control output relays. Programs (commands) for PLCC are written in a simple control language, using a plain text editor like Notepad or DOS Edit.

Features:

Inputs:

Up to 8 inputs from each of the 3 printer ports supported by DOS/Win95.

Manual keyboard character also inputs accepted.

Outputs:
Up to 8 outputs to each printer port.

Sound files may be played through the PC's audio system.

(Includes a third-party player for .WAV files.)

Programs:
Effectively unlimited number of separate programs may be run simultaneously.

Steps:

Each program (thread) may consist of an effectively unlimited number of steps.

Language:
A small control language with only 6 key word commands and simple syntax.

Speed:
With even a slow (386/30 MHz) processor, PLCC can run hundreds of program steps at once, without missing cues.

Requirements:

IBM PC compatible computer

386/30 or better recommended

MS DOS or Windows 95

Approximately 1 MB hard drive space

Standard or enhanced parallel printer port

Will support up to 3 ports

SoundBlaster ((Creative Labs) compatible sound board (optional)

All code and designs copyright © 1998,2000

Contact: dbell@TheBells.net

David J. Bell

Updates and work-in-progress:

Campbell, CA

ftp://TheBells.net/pub/PLCC/

Right to reproduce not for sale freely released

to members of the Halloween and Theatre communities.

Installation:

Insert the installation disk in the floppy drive.

From the DOS command line, type d:\SETUP, where d: is your floppy drive I.D., usually A:.

From Win 95, click Start, Run, enter d:\SETUP, and click OK. All the PLCC files will be unpacked into the directory C:\PLCC.

That's it!

Hardware:

PLCC is only the software component of a programmable show controller. It will run without a control board, but will be limited to keyboard inputs and sound outputs. In order to operate valves, lights, etc. and to respond to sensors, an external board carrying up to 8 output devices (typically relays) and accepting up to 8 inputs (typically switch closures) is required. Suitable boards can be built, or purchased, usually with slight modifications needed. Specifications and a simple board design are included at the end of this document.

Software:

The directory C:\PLCC contains the following files:

PLCC.EXE

The controller program

PLCC.DOC

This document

DEMO1.PLC

Several demonstration script files, with comments

DEMO2.PLC

DEMO3.PLC

DEMO4.PLC

OFF.PLC

Just turns off all outputs - useful for master reset

SHEET1.GIF
Schematics of a simple I/O board design

SHEET2.GIF

SHEET3.GIF

PLANY.EXE
A sound (.WAV) file player, which can also be used to make an executable program out of a .WAV file.

PLANY.DOC
Documentation for the above.

WELCOME.EXE
A 'spooky' welcome message for a haunt

Further, customized, program files are easily written, to control show events.

Operation:

Start PLCC from a DOS command line, either by booting the PC in MS-DOS mode, or by opening An MS-DOS Prompt window under Win95:

C:\PLCC> PLCC [-v] [-d] <program file>

<program file> is your control script, for example: DEMO1.PLC. Program files may have any extension you wish, as long as that extension is entered on the command line. The default extension is ".PLC". If you use that, you may enter just the file name portion (no period or extension) on the command line.

[-v] is an optional flag used to put PLCC into "Verbose" mode, where it creates an output listing from the script file. After exiting PLCC, the listing will be in file PLCC.LOG. If any errors were detected in the script file, the bad lines and an error description will be placed in PLCC.LOG, regardless of the -v flag.

[-d] is an optional flag used to put PLCC into "Dump" mode, where it displays on the console the internal format of the script file, and the starting addresses of the several program threads it encounters. In this mode, PLCC will pause twice before actually starting to run your programs, to allow the displays to be read on the screen.

Examples:

C:\PLCC> PLCC -v DEMO2.TXT

C:\PLCC> PLCC MYFILE.PLC

C:\PLCC> PLCC HAUNT

If no input file is given, PLCC will accept commands from the operator, until end of input program.

If an input file name is given, but cannot be opened, an error message is printed, and PLCC halts.

Operation continues until interrupted by typing an <ESC> on the keyboard.

Script files:

Script files are plain text files, and may be written using any text editor. EDIT under DOS, or Notepad under Win95 are good, simple examples. If you use anything like Microsoft Word or another word processing application, simply be sure to save the file as Text Only, with your choice of file extension.

Scripts are structured very freely, and permit comments on separate lines, or in most cases, on the same line as a command. All commands may be shortened to as little as the first character, and commands and their parameters are separated by one or more spaces or TABs.

Script commands:

Words in BOLD are command keywords, and may be shortened to one or more characters.

Keywords should start at the beginning of a line, with no leading paces.

Words in ITALICS are references to other word definitions.

/ or ;
On a line by itself, one of these indicates that the entire line is treated as a comment. Further, any command may have comments after the last parameter, except SYSTEM or NOTATE commands.

WAIT <port> <pattern>
Wait for a matching pattern on an input port.
OUTPUT <port> <pattern>
Output the pattern to output port.

TOGGLE <port> <pattern>
Invert the pattern 1-bits on output port.

DELAY
<time>

Do nothing in this program, until <time> (in seconds) has elapsed.

<time> may now be a decimal number: the program will accept and execute times like 1.2, 10.5, etc. Actual execution will be in increments of 55 milliseconds (PC timer dresolution.)

KEY
<char>

Wait for operator to enter <char> at the keyboard (case sensitive).

SYSTEM <command>
Execute the command string <command> from DOS. This is used commonly to run a sound program.

NOTATE <string>
Print the <string> to the display.

$
End of thread marker. Two successive lines starting with a '$' indicate end of the entire program.

<port>
This is a logical port number. The first parallel port on your machine is defined as port 0, additional ports could be 1, 2, and potentially more.

Input and output port numbers may be freely intermixed within a thread or an entire script. For example, you might be waiting for an event trigger detected as a '1' in a particular bit on input port 0, and in response, set a bit in output port 1. However, if output bits need to be set in more than one port, they must be done in separate command lines. For example:

Out
0
00000001 may be followed by

Out
1
10001100

There is no mechanism to set bits in more than one output port simultaneously. The execution speed of the system is fast enough that there would be no noticeable delay between the two successive operations, however.

Similarly, for input ports, if you need to detect bits present in more than one port, say a guest stepped on a trigger mat, and NO guest is standing on another mat - say in the exit of the effect, the tests must be done in sequence. For example:

Wait
0
00000100
entry mat active

Wait
1
00000000
exit mat not active

Out
0
00110000
fire effect!

This will result in the program detecting the first trigger, then waiting until the second pattern also matches. This can cause problems with program flow, so it is recommended that input bits be grouped together on a single port, if they interact. In most cases, this is not a problem.

<pattern>
A representation of an input or output word, consisting of up to 8 bits of '1', '0', or "don't care". "Don't care" bits are indicated by a period. For input pattern matching these bits are ignored, and only those set to '1' or '0' are compared. For output patterns, the "don't care" bits are left in their previous state, and only '1' or '0' bit positions are modified.

Examples:

Wait
0
.......1
match only if bit 0 True

Wait
0
0......1
match only if bit 0 is True (grounded) and bit 7 is False (open).

Patterns read right-to-left, with Bit 0, the least significant bit, on the right. They may be shortened to as few right-most bits as required, and the more significant, left most bits will be set to "don't cares".

<sound program>
Sound programs are Windows-standard .WAV sound files or certain other sound file formats, modified to allow them to run as programs. This is accomplished by use of the freeware program PLANY.EXE, included in this distribution. Consult the file PLANY.DOC for full information, but briefly, given a sound file HELLO.WAV:

C:\PLCC> copy /B PLANY.EXE+HELLO.WAV HELLO.EXE

After the copy, executing HELLO.EXE will play the sound.

Example Scripts:

DEMO1.PLC

Runs a small home haunt example, with a display with lights and CO2 jet, 2 pop-up ghosts, an air-blast triggered by the operator, and a sound message.

/ Repeat pop-up ghost 1 on a 30-sec period,

/ firing air valve for 1 second each cycle

out 0 1........

delay 1

out 0 0........

delay 29

$

/ Loop pop-up 2 on a 31-sec period,

/ starting a little later than #1

delay 15

out 0 .1.......

del 1

out 0 .0.......

del 15

$

/ on key 'W', launch WELCOME! voice

key W

System Welcome.exe

$

/ on key 'F', fire valve 3

Key F

out 01...

d 1

out 00...

$

/ On entry, turn on lights, wait 1 second,

/ blast CO2 valve, shut off the lights, and

/ hold off re-trigger for 10 seconds.

Wait 01...

Look for PIR trigger.

out 01

Spotlights ON

del 2

 2 seconds before

out 01.

CO2 valve OPEN

del 2

 for 2 seconds.

out 00.

Valve CLOSED.

del 2

Lights stay ON for 2 seconds,

out 00

 then OFF.

del 10

Prevent immediate re-trigger.

$

/ that's all...

$

DEMO2.PLC

Demonstrates simple DELAY and OUTPUT tests, and how the program detects and logs errors in the input script file. After running this demo, exit PLCC and look at the file PLCC.LOG. If you ran PLCC without the Verbose (-v) option flag, the only entry will be the line with the error. If you ran with the -v flag, the full program will be listed, and the error indicated.

/ test DELAY and outputs

del 2

out 0 01010101

del 2

out 0 10101010

del 3

$

/ This thread has an error

wait 0 1...

o 1

d 3

o 0 0

d 4

$

$

DEMO3.PLC

A simple test program that looks for each input bit on port 0, prints a message when that input is grounded, and sets the corresponding output bit while the input is held closed.

/ Check input and output bits

wait 0 1.......

out 0 1.......

note Saw 1.......

wait 0 0.......

out 0 0.......

$

wait 0 1......

out 0 .1......

note Saw .1......

wait 0 0......

out 0 .0......

$

wait 0 1.....

out 0 ..1.....

note Saw ..1.....

wait 0 0.....

out 0 ..0.....

$

wait 0 1....

out 0 ...1....

note Saw ...1....

wait 0 0....

out 0 ...0....

$

wait 0 1...

out 01...

note Saw1...

wait 0 0...

out 00...

$

wait 0 1..

out 01..

note Saw1..

wait 0 0..

out 00..

$

wait 0 1.

out 01.

note Saw1.

wait 0 0.

out 00.

$

wait 0 1

out 01

note Saw1

wait 0 0

out 00

$

$

OFF.PLC

Resets all outputs, then waits a long time…

out 0 00000000

delay 65535

$

$

[image: image1.png]oo

o1

oz

oz

Dot

Dos

Dog

o7

5vm

e

ac
Outputs

s®
i
TorC
fecn)
pat o1
EE i s®
3o
2| 1l
o o g e
o] M [
s®
5o . m
L 2 12
oo 1] A
1| s
e 1] a
1] o =
. 1ot
@ Tw
5o
s®
15
s®
B
s®
s®

Paralle1 1O Board

Output Section.

lacm

[image: image2.png]TorC
fecn)
=y

i

T

Paralle1 1O Board

Input Section

[image: image3.png]Paralle1 1O Board

Test/Calibrate Plug

oo

o1

oz

oz

Dot

Dos

Dog

o7

TorC
fecn)
v

21

a1

216

o1

o

on

5o

o1

n

an

n

o

o

o

s

s

s

s

3

�

�

�

